Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 45949-45959, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748196

RESUMO

CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.

2.
J Environ Sci (China) ; 126: 668-682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503792

RESUMO

In the present study, two nanosized MnO2 with ß and δ phase structures and potassium loaded MnO2 catalysts with varied K loading amounts (denoted as K/MnO2) were prepared. Temperature programmed oxidation and isothermal reactions in loose contact modes were employed to examine the soot oxidation activity of the as-prepared catalysts. Characterization results show that as compared with ß-MnO2, δ-MnO2 has larger surface area and higher content of hydroxyl groups. Upon K loading, abundant hydroxyl groups in δ-MnO2 effectively sequestrate K cation to form bound K species and free K species are available only at K loading above 3.0 wt.%. In contrast, the majority of K species present as free state in ß-MnO2 even at a K loading of 1.0 wt.% due to its very low hydroxyl group content. The O2 temperature-programmed desorption (O2-TPD) demonstrates that the catalysts with free K species exhibit strong ability in activating gaseous O2, whereas the catalysts only having bound K display minor O2 activation capability. As a result, despite of slightly lower activity of ß-MnO2 than δ-MnO2, the K/ß-MnO2 catalysts exhibit substantially higher activities than K/δ-MnO2 catalysts with identical K loadings. The finding in this study clearly demonstrates that for MnO2 based catalysts, the enhancement of catalytic activity for soot oxidation is highly K loading amount dependent and the dependency is strongly associated with the phase structure of MnO2.


Assuntos
Compostos de Manganês , Fuligem , Óxidos , Gases , Potássio
3.
Sci Adv ; 8(30): eabn4650, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905181

RESUMO

Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring. This facilitated size match-based interactions between small apolar compounds and the isolated aromatic region of GO, resulting in high binding selectivity relative to larger apolar compounds. The interactions between the functional group(s) of polar aromatics and the epoxy/hydroxyl groups around the isolated aromatic region of GO enhanced binding selectivity relative to similar-sized apolar aromatics. These findings provide opportunities for precision separations and molecular recognition enabled by size/polarity match-based selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...